Information and Coding Theory

ENEE 5304

Problem Set 3

Optimum Receivers and Channel Capacity

1. Two random variables X and Y are distributed according to

$$
f_{X Y}(x, y)=\left\{\begin{array}{c}
K(x+y), \quad 0 \leq x, y \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

a) Find K.
b) Find the probability $P(X+Y>1)$.
2. A noise process has a power-spectral density given by

$$
G_{n}(f)=\left\{\begin{array}{c}
10^{-8}\left(1-\frac{|f|}{10^{8}}\right),|f|<10^{8} \\
0,|f|>10^{8}
\end{array} .\right.
$$

This noise is passed through an ideal bandpass filter with a bandwidth of 2 MHz centered at 50 MHz . Find the power content of the output process.
3. Find the differential entropy of the continuous random variable X with an exponential random variable with parameter $\lambda>0$

$$
f_{X}(x)=\left\{\begin{array}{c}
\frac{1}{\lambda} \exp (-x / \lambda), \quad x>0 \\
0, \text { otherwise }
\end{array} .\right.
$$

4. Calculate the information rate in bits/sec of a telegraph source having two symbols, dot and dash. The dot duration is 0.2 s , the dash is twice as long as the dot and half as probable.
5. Consider discrete memoryless channel with the transition matrix

$$
P_{i j}=\left[\begin{array}{cc}
1 & 0 \\
0.5 & 0.5
\end{array}\right]
$$

Find the capacity of the channel.
6. Find capacity of an additive Gaussian white noise channel with a bandwidth of 1 MHz , power of 10 W , noise power-spectral density of $\frac{N_{0}}{2}=10^{-9} \mathrm{~W} / \mathrm{Hz}$.
7. Consider a binary symmetric channel characterized by the transition probability p. Plot the mutual information of the channel as a function of P 1 , the a priori probability of symbol 1 at the channel input; do your calculations for the transition probability $p=0,0.1,0.2,0.3,0.5$.
8. The binary orthogonal frequency shift keying (FSK) signaling scheme employs the following two equally probable signals $\mathrm{s}_{1}(\mathrm{t})$ and $\mathrm{s}_{2}(\mathrm{t})$ to represent binary logic 0 and 1 respectively over a channel corrupted by AWGN with $\mathrm{N}_{0}=0.001 \mathrm{~W} / \mathrm{Hz}$:
$s_{1}(t)=4 \cos \left(2 \pi f_{1} t\right), \quad 0 \leq t \leq T_{b}$
$s_{2}(t)=4 \cos \left(2 \pi f_{2} t\right) \quad 0 \leq t \leq T_{b}$,
a. If the bit error probability is not to exceed 10^{-4}, find the maximum allowable data rate R_{b} in bits per second.
b. Sketch the optimum demodulator
9. Let X have a density and let $\mathrm{H}(\mathrm{X})$ denote the differential entropy. Show that for any $\mathrm{a}>0$ we have, $\mathrm{H}(\mathrm{aX})=\mathrm{H}(\mathrm{X})+\log \mathrm{a}$.
10. The joint probability mass function of two random variables X and Y is shown in the table below.

		Y	
		2	3
x	0	0.45	0.12
	1	0.15	0.28

a. Find $\mathrm{H}(\mathrm{X})$
b. Find I(X; Y)

